2016年8月22日月曜日
Dirac equations (5)
In the Dirac representation (the standard representation)
αi=(0σiσi0),β=(100−1),γγ=(0σσ−σσ0)
and the boost a frame in the n direction,
S(Λ)=coshφ2I−αα⋅nsinhφ2
Then making use of coshφ=γ=ϵm and sinhϕ=βγ,
coshφ2=√coshφ+12=√ϵ+m2msinhφ2=√coshφ−12=√ϵ−m2m
The boost transformation is
S(Λ)=(coshφ−σσ⋅nsinhφ−σσ⋅nsinhφcoshφ)=(√ϵ+m2m−σσ⋅n√ϵ−m2m−σσ⋅n√ϵ−m2m√ϵ+m2m)
Use (−1)×n′ for boosting from the rest frame of a particle into the frame of an observer. Using ψ(x′)=S(Λ)ψ(x), obtain the plane wave solutions.
I have still a question: the Dirac field ϕ has the dimension [ψ]=L1/2 and we can see from the commutation relation that [bα]=[dα]=L1/2. Therefore, can we confirm that [u]=[v]=L0? (If this is true, it is consistent.)
ψ(x)=∫dk(2π)3mk0∑α=1,2[bα(k)u(α)(k)e−ik⋅x+d†α(k)v(α)(k)eik⋅x]¯ψ(x)=∫dk(2π)3mk0∑α=1,2[b†α(k)¯u(α)(k)eik⋅x+dα(k)¯v(α)(k)e−ik⋅x]
Anticommutation relations are
{bα(q),b†β(q′)}=(2π)3k0mδ(q−q′)δαβ{dα(q),d†β(q′)}=(2π)3k0mδ(q−q′)δαβ
and all other anticommutators give zero.
{ψξ(t,x),ψ†η(t,y)}=δξηδ(x−y)
{ψa(x),¯ψb(x′)}=(iγμ∂μ+m)abiΔ(x−x′)
ラベル:
Physics
RELATED POSTS

The Electroweak Theory (3)
カイラリティーとヘリシティーの違いに言及したが、それを数学的に議論できる。まずDirac方程式の平面波解を考えて、 実験的には、パリティーは弱い ...
登録:
コメントの投稿 (Atom)
0 件のコメント:
コメントを投稿