Processing math: 100%

2016年8月22日月曜日

Dirac equations (5)

In the Dirac representation (the standard representation) αi=(0σiσi0),β=(1001),γγ=(0σσσσ0) and the boost a frame in the n direction, S(Λ)=coshφ2Iααnsinhφ2 Then making use of coshφ=γ=ϵm and sinhϕ=βγ, coshφ2=coshφ+12=ϵ+m2msinhφ2=coshφ12=ϵm2m The boost transformation is S(Λ)=(coshφσσnsinhφσσnsinhφcoshφ)=(ϵ+m2mσσnϵm2mσσnϵm2mϵ+m2m) Use (1)×n for boosting from the rest frame of a particle into the frame of an observer. Using ψ(x)=S(Λ)ψ(x), obtain the plane wave solutions. I have still a question: the Dirac field ϕ has the dimension [ψ]=L1/2 and we can see from the commutation relation that [bα]=[dα]=L1/2. Therefore, can we confirm that [u]=[v]=L0? (If this is true, it is consistent.) ψ(x)=dk(2π)3mk0α=1,2[bα(k)u(α)(k)eikx+dα(k)v(α)(k)eikx]¯ψ(x)=dk(2π)3mk0α=1,2[bα(k)¯u(α)(k)eikx+dα(k)¯v(α)(k)eikx] Anticommutation relations are {bα(q),bβ(q)}=(2π)3k0mδ(qq)δαβ{dα(q),dβ(q)}=(2π)3k0mδ(qq)δαβ and all other anticommutators give zero. {ψξ(t,x),ψη(t,y)}=δξηδ(xy) {ψa(x),¯ψb(x)}=(iγμμ+m)abiΔ(xx)

0 件のコメント:

コメントを投稿