2016年8月19日金曜日

ロドリゲス公式よりも便利な公式

有名な多項式を計算する場合にロドリゲスの公式をつかって計算する人がいるはず。ロドリゲス公式よりもはるかに速く計算できる方法というと漸化式だろうと思う。

漸化式を使わずに、一般ラゲール多項式を計算する公式はある。

\begin{align} L^{ (\alpha) }_{n } (z) = \sum^{n}_{k=0} \frac{ (-1 )^{k} }{ k! (n-k)! } z^{k } \frac{ (\alpha + n)! }{ (\alpha + k)! } \quad \end{align} 便宜上この公式をformula GLとしよう。この公式はロドリゲス公式からライプニッツの公式を使って導出できる。
この公式をつかって \begin{align} L^{(\alpha ) }_{0} (z) =1 \; , \quad L^{(\alpha )}_{1} (z) = \alpha + 1 - z \; , \quad L^{(\alpha ) }_{2} (z) = \frac{(\alpha + 2) (\alpha + 1 ) }{2 } - (\alpha + 2) z + \frac{ z^{2 } }{2} \; , \\ L^{(\alpha ) }_{3} (z) = \frac{1}{6} (\alpha + 3 ) (\alpha + 2 ) (\alpha + 1) + \frac{(-1)}{2} (\alpha +3)(\alpha + 2) z + \frac{( \alpha + 3) }{2} z^{2} + \frac{ (-1) }{6} z^{3} \end{align} を計算してみた。 また、4次5次の多項式も \begin{align} L^{(\alpha ) }_{4} (z) & = \frac{1}{24} (\alpha + 4) (\alpha + 3) (\alpha + 2) (\alpha + 1) + \frac{(-1)}{6} (\alpha + 4)(\alpha + 3)(\alpha +2) z + \frac{1}{4} (\alpha + 4)(\alpha + 3)z^{2} + \frac{(-1)}{6} (\alpha +4) z^{3} + \frac{1}{24} z^{4 } \\ L^{(\alpha ) }_{5} (z) & = \frac{1}{120}(\alpha + 5)(\alpha + 4) (\alpha +3) (\alpha +2) (\alpha + 1) + \frac{(-1)}{24} (\alpha +5)(\alpha +4) (\alpha +3) (\alpha +2) z + \frac{1}{12} (\alpha +5)(\alpha +4) (\alpha +3) z^{2} \nonumber \\ & \quad + \frac{(-1) }{12} (\alpha +5) (\alpha +4) z^{3} + \frac{1}{24} (\alpha +5) z^{4} + \frac{(-1) }{120} z^{5 } \end{align} となる。
この公式の利点は漸化式にくらべて各項の係数を把握しやすいというところだと思う。もちろん低次の項に限っての話でしょうが。 こららの他にクンマー級数(クンマーの超幾何関数)をもちいて \begin{align} L^{(\alpha ) }_{n} (z) = \frac{ (\alpha + n) !}{ n! \alpha ! } M(-n, \alpha+1; z ) \end{align} とかくこともできる。この公式をformula Kとすると、もちろんformula GLで計算される結果と一致する。 たとえば\( \alpha=1.5, \; N=4 \) と \( \alpha=5.0, \; N=7 \)の場合を計算しグラフに示すと
といったようになる。

またformula GLを使うことで \begin{align} \frac{\partial L^{(\alpha) }_{n } (z) }{\partial z} = - L^{(\alpha + 1) }_{n-1} (z) \end{align} という公式も証明できる。

単純に、\( L^{(\alpha ) }_{n} (z ) \)の微分を考えてやると、 \begin{align} \frac{\partial L^{(\alpha) }_{n } (z) }{\partial z} & = \sum^{n}_{k=1} \frac{ (-1)^{k} }{(k-1)! (n-k)!} z^{k-1} \frac{(\alpha + n)!}{(\alpha + k)! } \\ & = - \sum^{n}_{k=1} \frac{ (-1)^{k-1} }{(k-1)! ( (n -1) - (k-1) )!} z^{k-1} \frac{(\alpha + 1 + (n-1) )!}{(\alpha + 1 + (k-1) )! } \end{align} となる。ここで\( \nu = k-1 \) としてやると \begin{align} \frac{\partial L^{(\alpha) }_{n } (z) }{\partial z} = - \sum^{n-1}_{\nu = 0} \frac{ (-1)^{\nu} }{ \nu ! (n-1 - \nu) ! } z^{\nu } \frac{(\alpha + 1 + (n-1) )!}{(\alpha + 1 + \nu )! } = - L^{(\alpha + 1) }_{n-1} (z) \; \end{align} となることがわかる。

0 件のコメント:

コメントを投稿