Loading [MathJax]/jax/output/CommonHTML/jax.js

2020年6月25日木曜日

Easy Physics: Wick's theorem

Wick's theorem is a theorem which links the time-ordering of fields to the normal-ordering of those.


T(ϕz1ϕz2ϕzn1ϕzn)=:ϕz1ϕz2ϕzn1ϕzn:+:ϕz3ϕzn1ϕzn:0|T(ϕz1ϕz2)|0+:ϕz2ϕz4ϕzn1ϕzn:0|T(ϕz1ϕz3)|0++:ϕz1ϕz2ϕzn3ϕzn2:0|T(ϕzn1ϕzn)|0+:ϕz5ϕzn1ϕzn:0|T(ϕz1ϕz2)|00|T(ϕz3ϕz4)|0+:ϕz5ϕzn1ϕzn:0|T(ϕz1ϕz3)|00|T(ϕz2ϕz4)|0++:ϕz1ϕz2ϕzn5ϕzn4:0|T(ϕzn3ϕzn2)|00|T(ϕzn1ϕzn)|0+sum over triply contracted terms+higher contractions. The easiest example is for n=2: if tA>tB, we have LHS=ϕA+ϕB++ϕA+ϕB+ϕAϕB++ϕAϕB and RHS=:ϕAϕB:+0|T(ϕAϕB)|0=ϕA+ϕB++ϕA+ϕB+ϕB+ϕA+ϕAϕB+[ϕA,ϕB+]=ϕA+ϕB++ϕA+ϕB+ϕAϕB++ϕAϕB.

-------------------------
We have a lemma:
:ϕz1ϕz2ϕzn1:ϕzn+=:ϕz1ϕz2ϕzn1ϕzn+:+:ϕz2ϕzn1:0|T(ϕz1ϕzn+)|0+:ϕz1ϕzn1:0|T(ϕz2ϕzn+)|0++:ϕz1ϕz2ϕzn2:0|T(ϕzn1ϕzn+)|0 The simplest example of this is for n=2: (LHS)=:ϕA:ϕB+=ϕAϕB++ϕA+ϕB+ and (RHS)=:ϕAϕB+:+0|T(ϕAϕB+)|0=:ϕAϕB+:+[ϕAϕB+]=ϕA+ϕB++ϕAϕB+. So we find that the lemma is true for n=2.
Let us denote ϕA by A, and ϕA± by A±. We also check the lemma for n=3: (LHS)=:AB:Z+=A+B+Z++ABZ+A+BZ++B+AZ+, and (RHS)=:ABZ+:+:A:[B,Z+]+:B:[A,Z+],=Z+A+B++Z+A+B+Z+B+A+Z+AB+A+BZ+A+Z+B+ABZ+AZ+B+B+AZ+B+Z+A+BAZ+BZ+A=A+B+Z++ABZ+A+BZ++B+AZ+

0 件のコメント:

コメントを投稿