Wick's theorem is a theorem which links the time-ordering of fields to the normal-ordering of those.
\begin{align}
T(\phi_{z_{1} } \phi_{z_{2} } \cdots \phi_{z_{n-1} } \phi_{z_{n } } )
& = \; \;
: \phi_{z_{1} } \phi_{z_{2} } \cdots \phi_{z_{n-1} } \phi_{z_{n } } :
\; + \; : \phi_{z_{3} } \cdots \phi_{z_{n-1} } \phi_{z_{n } } : \langle 0 | T( \phi_{z_{1} } \phi_{z_{2} }) | 0 \rangle
\; + \; : \phi_{z_{2} } \phi_{z_{4} } \cdots \phi_{z_{n-1} } \phi_{z_{n } } : \langle 0 | T( \phi_{z_{1} } \phi_{z_{3} }) | 0 \rangle
+ \cdots \nonumber \\
& \quad
\; + \; : \phi_{z_{1} } \phi_{z_{2} } \cdots \phi_{z_{n-3} } \phi_{z_{n-2 } } : \langle 0 | T( \phi_{z_{n-1} } \phi_{z_{n} }) | 0 \rangle \nonumber \\
& \quad
\; + \; : \phi_{z_{5} } \cdots \phi_{z_{n-1} } \phi_{z_{n } } :
\langle 0 | T( \phi_{z_{1} } \phi_{ z_{2} } ) | 0 \rangle
\langle 0 | T( \phi_{z_{3} } \phi_{ z_{4} } ) | 0 \rangle
\; + \; : \phi_{z_{5} } \cdots \phi_{z_{n-1} } \phi_{z_{n } } :
\langle 0 | T( \phi_{z_{1} } \phi_{ z_{3} } ) | 0 \rangle
\langle 0 | T( \phi_{z_{2} } \phi_{ z_{4} } ) | 0 \rangle
\; + \cdots \nonumber \\
& \quad
\; + \; : \phi_{z_{1} } \phi_{z_{2} } \cdots \phi_{z_{n-5} } \phi_{z_{n -4} } :
\langle 0 | T( \phi_{z_{n-3} } \phi_{ z_{n-2} } ) | 0 \rangle
\langle 0 | T( \phi_{z_{n-1} } \phi_{ z_{n } } ) | 0 \rangle \nonumber \\
& \quad
\; + \; \text{sum over triply contracted terms} \nonumber \\
& \quad
\; + \; \text{higher contractions} \; .
\end{align}
The easiest example is for \( n=2 \): if \( t_{A} > t_{B} \), we have
\begin{align}
{\rm LHS} =
\phi_{A+} \phi_{B+} + \phi_{A+} \phi_{B-} + \phi_{A-} \phi_{B+} + \phi_{A-} \phi_{B-}
\end{align}
and
\begin{align}
{\rm RHS} & = \quad : \phi_{A} \phi_{B} : + \langle 0 | T( \phi_{A } \phi_{ B } ) | 0 \rangle \\
& = \phi_{A+} \phi_{B+} + \phi_{A+} \phi_{B-} + \phi_{B+} \phi_{A-} + \phi_{A-} \phi_{B-} +
[\phi_{A-}, \phi_{B+} ] \nonumber \\
& = \phi_{A+} \phi_{B+} + \phi_{A+} \phi_{B-} + \phi_{A-} \phi_{B+} + \phi_{A-} \phi_{B-} \; .
\end{align}
-------------------------
We have a lemma:
\begin{align}
: \phi_{z_{1} } \phi_{z_{2} } \cdots \phi_{z_{n-1} } : \phi_{z_{n} + } & = \quad : \phi_{z_{1} } \phi_{z_{2} } \cdots \phi_{z_{n-1} } \phi_{z_{n} + } :
+ : \phi_{z_{2} } \cdots \phi_{z_{n-1} } : \langle 0 | T( \phi_{z_{1} } \phi_{z_{n} + } ) | 0 \rangle
+ : \phi_{z_{1} } \cdots \phi_{z_{n-1} } : \langle 0 | T( \phi_{z_{2} } \phi_{z_{n} + } ) | 0 \rangle + \cdots \nonumber \\
& \quad
+ : \phi_{z_{1} } \phi_{z_{2} } \cdots \phi_{z_{n-2} } : \langle 0 | T( \phi_{z_{n-1} } \phi_{z_{n} + } ) | 0 \rangle
\end{align}
The simplest example of this is for \( n=2 \):
\begin{align}
(LHS) = \quad : \phi_{A} : \phi_{B+} = \phi_{A -} \phi_{B +} + \phi_{A + } \phi_{B + }
\end{align}
and
\begin{align}
(RHS) = \quad : \phi_{A} \phi_{B+} : + \langle 0 | T ( \phi_{A} \phi_{B +} ) | 0 \rangle
= : \phi_{A} \phi_{B+} : + [ \phi_{A- } \phi_{B +} ]
= \phi_{A +} \phi_{B+} + \phi_{A - } \phi_{B +} \; .
\end{align}
So we find that the lemma is true for \( n = 2 \).
Let us denote \( \phi_{A} \) by \( A \), and \( \phi_{A \pm } \) by \( A_{\pm } \).
We also check the lemma for \( n =3 \):
\begin{align}
(LHS) = \quad : AB : Z_{+} = A_{+} B_{+} Z_{+} + A_{-} B_{-} Z_{-} + A_{+} B_{-} Z_{+} + B_{+} A_{- } Z_{+} \; ,
\end{align}
and
\begin{align}
(RHS) & = \quad : AB Z_{+} : + : A : [B_{-} , Z_{+} ] + : B : [A_{-}, Z_{+ } ] \; , \\
& = Z_{+} A_{+} B_{+} + Z_{+} A_{+} B_{-} + Z_{+} B_{+} A_{- } + Z_{+} A_{- } B_{- } \nonumber \\
& \quad
+ A_{+} B_{-} Z_{+} - A_{+} Z_{+} B_{-} + A_{-} B_{-} Z_{+} - A_{-} Z_{+ } B_{- }
+ B_{+} A_{-} Z_{+} - B_{+} Z_{+} A_{-} + B_{-} A_{-} Z_{+} - B_{-} Z_{+} A_{-} \nonumber \\
& = A_{+} B_{+} Z_{+} + A_{-} B_{-} Z_{-} + A_{+} B_{-} Z_{+} + B_{+} A_{- } Z_{+}
\end{align}
0 件のコメント:
コメントを投稿