Wick's theorem is a theorem which links the time-ordering of fields to the normal-ordering of those.
T(ϕz1ϕz2⋯ϕzn−1ϕzn)=:ϕz1ϕz2⋯ϕzn−1ϕzn:+:ϕz3⋯ϕzn−1ϕzn:⟨0|T(ϕz1ϕz2)|0⟩+:ϕz2ϕz4⋯ϕzn−1ϕzn:⟨0|T(ϕz1ϕz3)|0⟩+⋯+:ϕz1ϕz2⋯ϕzn−3ϕzn−2:⟨0|T(ϕzn−1ϕzn)|0⟩+:ϕz5⋯ϕzn−1ϕzn:⟨0|T(ϕz1ϕz2)|0⟩⟨0|T(ϕz3ϕz4)|0⟩+:ϕz5⋯ϕzn−1ϕzn:⟨0|T(ϕz1ϕz3)|0⟩⟨0|T(ϕz2ϕz4)|0⟩+⋯+:ϕz1ϕz2⋯ϕzn−5ϕzn−4:⟨0|T(ϕzn−3ϕzn−2)|0⟩⟨0|T(ϕzn−1ϕzn)|0⟩+sum over triply contracted terms+higher contractions. The easiest example is for n=2: if tA>tB, we have LHS=ϕA+ϕB++ϕA+ϕB−+ϕA−ϕB++ϕA−ϕB− and RHS=:ϕAϕB:+⟨0|T(ϕAϕB)|0⟩=ϕA+ϕB++ϕA+ϕB−+ϕB+ϕA−+ϕA−ϕB−+[ϕA−,ϕB+]=ϕA+ϕB++ϕA+ϕB−+ϕA−ϕB++ϕA−ϕB−.
-------------------------
We have a lemma:
:ϕz1ϕz2⋯ϕzn−1:ϕzn+=:ϕz1ϕz2⋯ϕzn−1ϕzn+:+:ϕz2⋯ϕzn−1:⟨0|T(ϕz1ϕzn+)|0⟩+:ϕz1⋯ϕzn−1:⟨0|T(ϕz2ϕzn+)|0⟩+⋯+:ϕz1ϕz2⋯ϕzn−2:⟨0|T(ϕzn−1ϕzn+)|0⟩ The simplest example of this is for n=2: (LHS)=:ϕA:ϕB+=ϕA−ϕB++ϕA+ϕB+ and (RHS)=:ϕAϕB+:+⟨0|T(ϕAϕB+)|0⟩=:ϕAϕB+:+[ϕA−ϕB+]=ϕA+ϕB++ϕA−ϕB+. So we find that the lemma is true for n=2.
Let us denote ϕA by A, and ϕA± by A±. We also check the lemma for n=3: (LHS)=:AB:Z+=A+B+Z++A−B−Z−+A+B−Z++B+A−Z+, and (RHS)=:ABZ+:+:A:[B−,Z+]+:B:[A−,Z+],=Z+A+B++Z+A+B−+Z+B+A−+Z+A−B−+A+B−Z+−A+Z+B−+A−B−Z+−A−Z+B−+B+A−Z+−B+Z+A−+B−A−Z+−B−Z+A−=A+B+Z++A−B−Z−+A+B−Z++B+A−Z+